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Abstract: This paper develops a formalism for treating the solvent reorganization that accompanies all chemical 
reactions and physical processes in liquid solutions. In particular, cage environments are shown explicitly, and 
overall equations are separated into a nominal equation (which is essentially the conventional chemical equation) 
and an environmental (env) equation. The separation is useful because it follows from the Second Law that in dilute 
solution AGenv (same as AG°env) for solvent reorganization is generally zero, so that the nominal equation accounts 
for the observed standard free energy change AG0 associated with the process. On the other hand, AHem and A5env 
can be substantial, especially when the solvation involves hydrogen bonding. And since AGenv = 0, there is enthalpy-
entropy compensation to the extent that AHsm = rA5env Conventional thermodynamic accounting requires that 
A/fenv and A5env are added to, and become part of, AH° and AS0 for the overall process. Thus, when AHem » AG0, 
the plot of AH° vs AS° is nearly a straight line, with a slope close to the experimental temperature T. Two examples 
approaching this situation are presented and discussed. 

Introduction 

The term "solvent reorganization" has long been used to 
denote the transfer of solvent molecules between the bulk of 
the solvent and the solvation shells of solutes. It is generally 
agreed that solvent reorganization and the change in solvent 
reorganization which may accompany reactions and spectral 
transitions have thermodynamic consequences, especially in 
hydrogen-bonding solvents.'~3 One such consequence may be 
a propensity toward enthalpy—entropy compensation,4 dramatic 
examples of which have recently been published.5,6 

In this paper we shall propose a formalism for including 
solvent reorganization in chemical equations and develop the 
thermodynamic consequences. A key result is that under 
common conditions, solvent reorganization is indeed attended 
by enthalpy—entropy compensation. 

Environmental Equations and Solvent Reorganization 

Thermodynamics specifies compensation in terms of com
ponents, while chemical equations describe the behavior of 
molecular species, which may be defined as the macroscopic 
analogs of molecules. The thermodynamic equation for the 
solvation of gaseous X in a liquid solvent A is given in eq 1. 

X(g) = X(solute in solvent A) (1) 

This equation tells us that the solute dissolves, but it gives no 
information about the concomitant changes in liquid environ
ments. For simplicity let us suppose that the solution is dilute 

8 Abstract published in Advance ACS Abstracts, May 1, 1995. 
(1) Ritchie, C. D.; Virtanen, P. O. I. J. Am. Chem. Soc. 1972, 94, 4966-

71; 1973, 95, 1882-89. 
(2) Mirejovsky, D.; Arnett, E. M. J. Am. Chem. Soc. 1983, 105, 1112. 
(3) Chervenak, M. C ; Toone, E. J. J. Am. Chem. Soc. 1994,116, 10533. 
(4) Lumry, R.; Rajender, S. Biopolymers 1970, 9, 1125-227. 
(5) (a) Gilli, G.; Borea, P. A. Application of Charge Density Research 

to Drug Design; Jeffrey, J. A., Piniella, J. F., Eds.; Plenum Press: New 
York, 1991. (b) Gilli, P.; Ferretti, V.; Gilli, G.; Borea, P. A. / . Phys. Chem. 
1994, 98, 1515-8. 

(6) Danil de Namor, A. F.; Ritt, M.-C; Schwing-Weill, M.-J.; Arnaud-
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Figure 1. Solvent (A) and solute (X) molecules in their solvent cages. 
In (i) and (iii) the cages consist only of solvent molecules; in (ii) the 
cage of A has a solute molecule. 

and that in solution there are only the three caged species, (i)— 
(iii) of Figure 1, for which we shall adopt the following 
notation: A\a denotes an A molecule which only has A 
neighbors in its solvent shell, while in A\x one of the neighbors 
is X and the rest are A's. Similarly X\a denotes an X molecule 
which has only A neighbors. The label (\a, \x) after the species 
symbol (A, X) identifies the environment. There is no molec
ular-complex formation. If A and X were forming a complex 
A • X which then has only A neighbors in its solvent shell, we 
would write (A • X)\a. The model further assumes that the liquid 
environment of a molecule is controlled by its immediate 
neighbors, and that A\a and A\x are distinguishable. 

The distinguishability imposed on species by virtue of their 
liquid environments has been examined by the authors.7 In 
general there are two kinds of distinguishability: real (or 
observable), and ideal (or predicted by a primary theory such 
as wave mechanics). Ideal distinguishability exists for two 
liquid environments (such as A\a and A\x) when the difference 
between the potential energies of solvation of A in its electronic 
ground state, by \a vs \x, is at least of order 10 J/mol, a condition 
often met.7 Owing to potential-energy noise caused by the 
Brownian motions of the molecules, real distinguishability 
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Chart 1. Composition Tree 

I. Components 

II. Molecular 
Species 

III. Environmental 
Subspecies 

Solvent (1), n2 Dilute solute (2), n2 

A, nA = m 

A\a, n M a A\x, n M x 

x/ nX = n2 

X\a, nXVa 

requires a much greater average difference in the potential 
energies of solvation, of order 1 —3 kJ/mol, and is rare except 
in hydrogen-bonding sol vents.7c 

Within this more detailed framework we can now rewrite eq 
1 in terms of molecular species as 

X(g) + sx' A\a —• X\a + sx • A\x (2) 

Each molecular species is here labeled by its liquid environment. 
The coefficient sx denotes the mean number of A molecules in 
the solvent cage of an X molecule. Equation 2 shows why 
distinguishability is so important. If A\a and A\x were not 
distinguishable, these symbols would not correspond to different 
molecular species: the terms x̂ • A\x and sx' A\a on the two 
sides of eq 2 would cancel out, and (2) would reduce to (1). 

Equations with environmentally labeled molecular species 
have another feature: They can be separated into two parts 
which will be called the nominal and environmental equation. 
For eq 2 these parts are shown in (2n) and (2e). The separation 

X(g)^X\a 

sx • A\a ^* sx • A\x 

(2n) 

(2e) 

is useful because we shall show that the environmental part is 
subject to enthalpy—entropy compensation. If we are interested 
only in the change of free energy for the process we shall see 
that the nominal equation is all we need to consider because, at 
environmental equilibrium conditions, the change in free energy 
associated with (2e), AGenv, equals zero. 

Equation 2 applies only to a single molecular species (X) in 
a solvent (A), but the ideas can be readily extended to an 
equilibrium involving several species. Consider, for example, 
the formation of a solvated complex (X • Y) from solvated X 
and solvated Y, eq 3. Here sx, SY> and SXY denote mean 
neighbor numbers for X, Y, and X • Y, respectively. 

X\a + Sx • A\x + Y\a + sY • A\y »* 

(X • Y)\a + (sx + sY- sXY) • A\a + sXY • A\xy (3) 

The nominal (or free energy) part of 3 is (3n), and the 
environmental part is (3e). 

X\a + Y\a ** (X • Y)Na (3n) 

Sx • ANx + sY • ANy »* (sx + sY — sXY) • ANa + sXY • ANxy 
(3e) 

The nominal part states that solvated X plus solvated Y forms 
solvated X* Y; the respective solvation numbers, i.e. mean 
neighbor numbers, do not enter into the equation. This 
information is given in the environmental part, which states that 
Jx moles of A in Nx environments plus Sy moles of A in Ny 

(7) (a) Grunwald, E.; Steel, C. Pure Appl. Chem. 1993, 65, 2543-9. 
(b) Grunwald, E.; Steel, C. J. Phys. Chem. 1993, 97, 13326-9. (c) 
Grunwald, E.; Steel, C. J. Phys. Org. Chem. 1994, 7, 734-42. 

environments are transferred to (sx + ^ Y - *XY) m ° l e s °f A in 
Na environments plus SXY moles of A adjacent to X*Y 
complexes. 

Solvation and Thermodynamics 

In this section we shall derive enthalpy—entropy compensa
tion for environmental equations. Our examples for the 
molecular species involved in the nominal equations are simple 
and the mathematics correspondingly straightforward. Com
plicated nominal equations are often best handled by the 
powerful matrix methods recently described by Alberty in 
dealing with complex biochemical systems.8 

For definiteness, we shall consider (as before) a dilute solute 
X in a solvent A, with the formation of the species ANa, ANx, 
and XNa. The Composition Tree (Chart 1) shows that 
composition can here be stated on three levels: 

The first level is that of classical thermodynamics. The 
components are formal components—pure substances with 
known chemical formulas (those of A and X), and corresponding 
formula weights which may be adopted as units of macroscopic 
mass for the respective component. The formula-weight 
numbers, n\ and m, on this level express the masses of the 
components in the system. 

Atomic molecular theory enters at the second level, which is 
the usual level of chemical thermodynamics. The chemical 
formula is identified with the molecular formula, so that the 
solvent is said to consist of A molecules and the solute of X 
molecules. Composition is now expressed in terms of molecular 
species whose amounts are the mole numbers «A and nx, eq 
4a. 

iA = H1 and nx = n2 (4a) 

Although in this example the components and the molecular 
species are the same, this is not so in general. For example, in 
an aqueous salt solution, sodium chloride is a component while 
sodium and chloride ions are molecular species. 

At the third level, an explicit composition model is introduced 
in which the environmental subspecies now appear. Composi
tion is specified either in terms of the mole numbers /iA\a, «A\X> 
and «x\a, or of n\, nx, and the previously defined mean neighbor 
number Sx, eq 4b. 

"x\a = « X' lA\x' 
: SvH-v and nA\a = nA - sxnx (4b) 

Similarly, the Gibbs free energy of the solution at constant T 
and P can be written at three levels, eqs 5a,b,c. Gi, Gi, etc. 
denote the partial free energies, or chemical potentials, of the 
respective components or molecular species. (We shall use the 
term "partial free energy" throughout.) 

G = H1G1 + H2G2 (I) 

G1 = (dGtdnJ ; G2 = (dG/dnj (5a) 

(8) Alberty, R. A. Biophys. Chem. 1992, 42, 117-31. Alberty, R. A. J. 
Phys. Chem. 1992, 96, 9614-21. 
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G = nAGA + nxGx (II) 

GA = 0G/3nA)„x,eq; G x = 0G/3nx)„A,eq (5b) 

G = «A\a
GA\a + «A\xGA\x + »X\aGX\a (HI) 

GA\a = (9G/9"A\a)„AV<,«XNa;
 GA\x = (9 G / 9«A\x)n M a ,nxJ 

Gx^3 = (8GIdHxJn^ (5c) 

Superficially, these equations seem inconsistent. In (5a,b) G 
is a function of two composition variables (n\ = nA and «2 = 
nx), while in (5c) it depends on three. However, in (5a,b) there 
is an implied constraint: the species and their environments 
must be at equilibrium. This we have emphasised by writing 
the subscript "eq". Equation 5c is more general and the variable 
mole numbers (nA\a, «A\X, «x\a) may depart from environmental 
equilibrium. 

Equations 5a,b are mathematically analogous. The indepen
dent variables are equal (n\ = nA and «2 = «x) and the constraint 
"eq" is the same. It follows that Gi = GA and G2 = Gx. We 
shall carry on using the notation for level II. 

It will be convenient to transform the mole numbers in (5c) 
according to (4b). The result is (6). The definitions for the 
partial free energies (e.g. Gx\a) remain the same. 

G = «AGA\a + *X»X (GA\x ~ GA\a) + % G X\a (6) 

To impose equilibrium on (6), we let nA, nx, T, P be constant 
and allow sx to relax to equilibrium, so that G is at a minimum. 
The result for dG/dsx, after simplification via the Gibbs—Duhem 
equation, is eq 7. 

(9G/35x)„A,„x = n x (G A U -G M a ) = 0 (7) 

Accordingly, at environmental equilibrium, GA\* — GA\a = 0. 
Since this difference represents the environmental process, A\a 
—* A\x (e.g. solvent reorganization in (2e)), we have here a hint 
of enthalpy—entropy compensation: 

AGenv = (GA\X _ GA\a) = ° a t equilibrium; 
hence Ai/env = r-A5 e n v (8) 

We say "hint" because several logical pieces are still missing. 
First, it clearly would be fortuitous if the three quantities, AGenv, 
Aifenv, and ASem, vanished simultaneously at equilibrium. But 
in the Appendix we offer a formal proof that ASenv, and hence 
A//env, normally are non-zero. Second, AHsm and ASenv must 
become part of the standard partial enthalpy H°x and entropy 
5°x of the solute species. Third, we shall suggest, for later proof, 
that enthalpy—entropy compensation in a chemical process such 
as (3) is exact only in the environmental part (3e). 

Environmental Enthalpy-Entropy Compensation 

When we add dnx moles of X to the solution, with 
equilibrium maintained at constant T and P, we not only produce 
dnx moles of X\a but also change sx dnx moles of A from A\a 
to A\x. If the solution is dilute so that sx remains constant9 (in 
spite of the increase in the moles of X), the partial free energy 

dG/dnx (i.e. Gx) is therefore given by (9a). 

G X = GX\a + Sx(GA\x ~ GA\a) 

= GX\a (at equilibrium) (9a) 

The partial enthalpy 3i//3nx and entropy 3S/3nx are given 
similarly by (9b,c). 

tfx = #X\a + *x(#AVx-^Ma) (9b) 

Sx = Sx\a + *x(SA\x - V ) (9c) 

Now (//A\X — #AVJ and (SAX*.
 — Swd are properties of the solvent 

and so are virtually independent of mx, the molality of X, in 
dilute solution. They therefore become part of the standard 
partial enthalpy and entropy of X. Thus we obtain, at 
equilibrium at constant T and P, 

G°x = G V (10a) 

H°x = H°XXa + sx(HAXx-HAJ (10b) 

S\ = S0^ +sx(SA^-S^) (10c) 

Equations 10 are our key equations. They tell us the follow
ing: (i) The addition of solute X to solvent A is attended by 
solvent reorganization according to eq 2e. (ii) This solvent 
reorganization has no effect on G°x- (iii) The solvent reorga
nization contributes explicit terms SX(#A\X — #A\a) and SX(SA\X 
— 5A\a) to the solute's standard partial enthalpy, H°x, and 
entropy, S°x- (iv) The solvent-reorganization terms are locked 
into exact enthalpy—entropy compensation, (//A\X

 — #A\a) = 
T(SAXX - SA\a), because (GA\x - GA\a) = 0, eq 8. (v) Since the 
result has been arrived at by general thermodynamic arguments, 
it is valid regardless of the microscopic nature of the solvent 
environments whose change generates the difference between 
HA\x and #A\a and between SA\X and SA\a. Of course, the 
magnitude of the effect will depend on the nature of that change. 
Changes involving hydrogen bonds typically produce ten times 
greater effects than changes in dispersion interactions, as shown 
by the following numbers: In Pimentel and McClellan's review 
on hydrogen bonding,10 the range in AH0 for hydrogen-bond 
formation between phenols and alcohols and about 30 acceptors 
was found to be 30 kJ/mol while the standard deviation was 3 
kJ/mol. By contrast, in a calculation by the present authors 
based on the regular-solution model,70 the range in (HA\* — H^ 
for benzene interacting with 12 different aprotic solutes was 
400 J/mol and the standard deviation was 150 J/mol. 

Enthalpy—Entropy Compensation in a Reaction 

The above discussion is readily extended to equilibria in dilute 
solutions, since in a dilute solution each solute species is 
solvated as if the other solutes were absent. Thus, for X • Y 
complex formation according to eq 3, equations of the form of 
(10) may be written separately for each species. The standard 
enthalpy and entropy of reaction thus take the form of eqs 11. 

(9) The molar shift term for H2 and S2 (and hence for Hx and Sx) vanishes 
when Sx is constant. See eq 6 in the following: Grunwald, E. J. Am. Chem. 
Soc. 1984, 106, 5414—6. Note that Sx is a progress variable analogous to 
a in that paper. 

(10) Pimentel, G. C; McClellan, A. L. Annu. Rev. Phys. Chem. 1971, 
22, 347-85. 
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A # ° - [#°X • Y\a ~ H°XV ~ #°YvJ + 

[Sx . Y(#A\xy — ^A\a) ~~ SX(^A\K ~ ^A\a) - 5Y^AVy — ^AXa)] 

= Atf°nom + AH°env 

= [term 1] + [term 2] (Ha) 

A S 0 = [5 x • Y\a ~ S°X\a ~~ S°Y\a] + 

L̂ X • y(^A\xy ~ ^A\a) — W A \ I ~ Â\a) — 5Y^ANy ~ ^A\a)l 

= AS°„ + AS° 

[term 3 ]+ [term 4] (lib) 

Note that terms 1 and 3 go with the nominal eq 3n, while terms 
2 and 4 represent the solvent reorganization, eq 3e. Owing to 
enthalpy—entropy compensation in solvent reorganization, 
A#°env = T-AS°env, that is AG°env = 0, but there is no 
compensation requirement for terms 1 and 3. Indeed, [AH0

nom 

- T-AS0HOm], i.e. AG°nom, equals the standard free-energy 
change AG°react, which in general is not zero. 

In the following examples we shall apply these concepts to 
data for a series of reactions, X,\a + Y,\a — (X, • Y,)\a, yielding 
a series of free-energy changes AG0,), with similar series for 
AH° and AS0. Clearly, since AG°m,ij = 0, 

AG0,, = A G 0 ^ 

AH0^ AH0^ +AH0^j 

A5°, = A50
nom,y + AS0

enV|(/ 

(12a) 

(12b) 

(12c) 

Accordingly, when both AG0,; and AH°y are plotted against i 
and/or j or any index of ;' and/or j , the plot of AG0 will be 
easier to interpret because solvent reorganization does not enter. 
Moreover, for a series X,• + Y — X, • Y the variability of AG0 

is probably smaller than that of AH°, because the effects of a 
change in X on the nominal reaction and on solvent reorganiza
tion are separate phenomena. We shall find that the effect of 
solvent reorganization is accentuated in hydrogen-bonding 
solvents, and may become large in processes involving sub
stantial transfers of water molecules, as in the folding/unfolding 
of proteins in contact with water, or in the closing/opening of 
channels in membrane proteins. 

The variation in AH° can be written as (AH°y — AH°oo) = 
5AH° with similar definitions for <5AG° and 6AS0. 

Thus, 

(5AH0 = <5A#°_ + 6h (13a) 

with dh = 6AH°mv = (AH°em,ij - A#°env,oo) and 

SAS0 = 6AS°nom + dh/T (13b) 

When \dh\ » |<5A/f°„om|, environmental factors dominate in 
controlling the variations in AH0 and AS0 so that 

6AH0ZdAS0 « T, with \6AG°\ « \6AH°\ (14) 

In this case the plot of AH° vs AS"3 should be linear with a 
slope equal to the temperature; this is the case of virtually 
complete compensation. 

However, compensation does not require an explanation in 
terms of solvent reorganization since there are other mechanisms 
for enthalpy—entropy compensation. One such mechanism is 
solute-induced molar shifts—that is, shifts in equilibria among 
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Figure 2. Plot of A/T and AG0 vs AS0 for the binding of drugs 
dissolved in water by receptor sites in a series of membrane proteins. 
Data from ref 5a. 

(AH°vs.AS°) slope 294 K; correlation 0.994 

-150 -125 -100 -75 -50 -25 0 

AS0 (J/mol/K) 

Figure 3. Guest—host binding of a series of amino acids by 18-crown-6 
ether or cryptand-222 in methanol or ethanol. Data from ref 6. 

solvent species when the pure solvent consists of two or more 
molecular species.'' •'2 Examples considered by Grunwald and 
co-workers are shifts in the equilibrium between environmental 
isomers of water when nonpolar solutes are present1 '-12 and shifts 
in hydrogen-bonded linkage equilibria in alcohol solvents when 
hydrogen-bonding solutes are present.13 When such shifts occur, 
they contribute compensating additive terms ("lyodelphic" 
terms) to the standard enthalpy and entropy of the solute, and 
thus add to the overall compensation phenomenon. 

Compensation may also be associated with the nominal parts 
of eqs 13. For example, when X and Y react to form the 
complex X • Y, the stronger the interaction the more rigid the 
complex.10 This implies that as AH°nom becomes more negative 
so does AS°nom, again leading to compensation, but now the 
compensation is incomplete. Typically, (5A#°nom/<5AS0

nom > 
T, so that (5AG°nom is not negligible compared to 6AH°nom and 
has the same sign as the latter. These mechanisms can be quite 
significant and perhaps both, but certainly the latter, contribute 
to the changes plotted in Figures 2 and 3. However, there is 
no precedent in which the magnitude of incomplete nominal 
compensation or of molar-shift compensation approaches even 
half of the compensation seen in Figures 2 and 3. In first 
approximation, we shall therefore discuss the figures in terms 
of solvent reorganization only. 

(11) Grunwald, E. J. Am. Chem. Soc. 1986, 108, 5726-31. 
(12) Grunwald, E.; Comeford, L. Environmental Influences and Recogni

tion in Enzyme Chemistry; Liebman, J. F., Greenberg, A., Eds.; VCH 
Publishers: New York, 1988; Chapter 3. 

(13) Grunwald, E.; Pan, K.-C; Effio, A. J. Phys. Chem. 1976, 80, 2937-
40. 
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Examples5'6 

Figures 2 and 3 are examples in which the variability of AH0 

is much greater than that of AG0, showing that the compensated 
part of AiP dominates the uncompensated part: In a manner 
of speaking, the compensated tail wags the nominal dog. Both 
plots of AH° vs AS0 show strong linear correlations, with slopes 
close to the experimental temperatures (T). 

Binding by Membrane Proteins. Figure 2 represents the 
binding of a series of drugs dissolved in water by receptor sites 
in membrane proteins.5 It is believed that the binding triggers 
conformational changes that are similar to, or tantamount to, 
the opening or closing of membrane channels.53 The attendant 
transfer of water molecules is not known quantitatively, but 
experiments suggest numbers which can be as high as about 
60 water molecules.1415 

Let us look at the plot for AG° first. Measurements of useful 
accuracy are feasible in a range of about 40 kJ/mol, indicated 
by the dashed lines. The data points cover this entire range, so 
that AG0 is as variable as can be, and the standard deviation of 
AG0 is 8.4 kJ/mol. However, the range of AH0,150 kJ/mol, is 
nearly four times greater than the range of AG°, and the standard 
deviation of AH0 is 33 kJ/mol. The compensated contribution 
to AG° thus dwarfs the uncompensated contribution, so that 
the plot of AH° vs AS0 is virtually a compensation plot, with a 
slope of 265 K (compared with a mean experimental temperature 
of 290 K) and a correlation coefficient of 0.977. The range in 
AH° seems to be much too large to be explained in terms of 
binding-energy variation alone. 

From eq 3 we see that the environmental equation for the 
nominal reaction X,\a + Y,\a —* (X; • Y;)\a is, 

sx • A\x,- + .sY • AVy7- ** (,Sx + sY — Sx Y )A\a + sXY * A\x,-y-

(3'e) 

and so 6AH°em = (AH°em,v - AH°em,oo) is, 

<5A#°env = SX1YJ(H^J ~ #A\a) ~ 5x{#A\x, ~ #A\a) ~ 

sYj(H\\y. — #A\a) _ sX0Y0("A\xoyo ~ " A W "•" 

VANx0 - #A\a) + %0(#A\y0 " #A\a) (15) 

The s terms represent the numbers of solvent molecules 
associated with the various species, while the H terms are the 
solvent enthalpies in the different environments. If we say that 
the latter can vary over a range typically associated with 
hydrogen bonds (vide supra) and s « 10, then it is easy to 
generate values of about 100 kJ/mol for 6AH°tm. For example, 
for the series X,• + Y — X1 • Y 

3&H°em = SXY(HA% - #Ma) - Sx(Hj^ - HASa) -

XoY(^A\x0y ' #A\a) + *X„(#A\x ~HAJ (16) 

If Sx1Y = -Jx0Y = Sx, = Sx0 = s = 10, then eq 16 becomes 

6AH°em = s(HA^y - HA^y) - s(HA^ - HA^) (16') 

And if (HA\xjy - #A\x0y) = -(#A\X0
 _

 #A\X,)
 = 5 kJ/mol then 

(5AH°env = 100 kJ/mol. It is interesting to note that in 
examining the hemoglobin equilibrium, deoxygenated state (T) 
=** oxygenated state (R), Colombo et al.15 found that about 60 
extra water molecules were bound to the relaxed R state and 
that this contributed about 50 kJ/mol stability. 

(14)Zimmerberg, J.; Bezanila, F.; Parsegian, V. A. Biophys. J. 1990, 
57, 1049. 

(15) Colombo, M. F.; Rau, D. C; Parsegian, V. A. Science 1992, 256, 
655-659. 

Binding of Amino Acids by 18-Crown-6 and Cryptand-
2,2,2. Figure 3 represents the binding of a series of zwitterion 
amino acids, R • CH(NH3

+) • CO2", with 18-crown-6 ether (I) 
or cryptand-222 (II), in methanol or ethanol. The amino acids 
are GIy, Ala, Arg, Asn, Asp, Cys, GIu, His, He, Leu, Met, Phe, 
Ser, Thr, Trp, Tyr, VaI and thus cover a broad spectrum of R 
groups. 

.0 * * ^H Q 

eo. 

CE> 

A key feature of Figure 3 is that AG0 is nearly invariable, in 
spite of the variety of reactants and solvents. The standard 
deviation of AG0 for all points is 1.8 kJ/mol, and the range is 
9 kJ/mol. Accordingly, the plot of AH° vs AS0 resembles a 
textbook example of compensation. The standard deviation of 
AH° is 17 kJ/mol, and the range is over 60 kJ/mol. The slope 
is 294 K (compared with an experimental temperature of 298 
K), and the correlation coefficient is 0.994. 

As to the position of the points along the line, there is a 
substantial separation of the points by host, with relatively little 
overlap and with AH° for binding by 18-crown-6 being more 
negative. Within the range for each host, the AH° points tend 
to be more negative in ethanol than methanol. The magnitudes 
of the ranges are (in kJ/mol) the following: for cryptand-222, 
25 in MeOH and 35 in EtOH; for 18-crown-6, 20 in MeOH 
and 15 in EtOH. 

In forming a molecular complex, the -NH3
+ group of the 

amino acid invades the host cavity, probably more deeply in 
the case of 18-crown-6 which (judging by dipole moments of 
K+ complexes) probably changes to the crown conformation.16 

The deeper invasion of the 18-crown-6 cavity (relative to 
cryptand-222) may explain the more negative values of AH° 
and AS0. The accompanying solvent reorganization certainly 
involves alcohol molecules solvating the NH3

+ group and one 
face of the host, and probably also some molecules solvating 
the CO2

- group, whose solvation in the amino acid is strongly 
coupled to that of the NH3

+ group, as evidenced for example 
by the marked participation of water molecules in proton transfer 
between these groups.17 On the other hand, the substantial 
variability of AH° with the nature of the R group is unexpected. 
The data imply that the solvation shell of the R group is seriously 
perturbed by complex formation to the host, in a highly specific 
manner for which we know no analog. First, the R-group 
dependence of AH° for binding to 18-crown-6 shows no 
correlation with that for binding to cryptand-222. Second, the 
R-group dependence for either shows no correlation with that 
for pKa (also called pK2)

18 of the NH3
+ group in water, nor 

does pKs, correlate with AG° for complex formation to either 
host in either solvent. It looks like solvent reorganization 
follows a logic of its own, grounded in the richness of eq 15, 
so that the substituent effect is distinct from that for nominal 
reactions. 

(16) Grunwald, E.; I, T-P J. Am. Chem. Soc. 1974, 96, 2879-84. 
(17) Chang, K.-C; Grunwald, E. J. Phys. Chem. 1976, 80, 1422-26. 
(18) Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous 

Solution; Butterworths: London, 1965. 



5692 / Am. Chem. Soc, Vol, 117, No. 21, 1995 Grunwald and Steel 

Discussion 

Before closing, we shall compare thermodynamic mechanisms 
of enthalpy—entropy compensation, such as the present solvent-
reorganization mechanism, with Leffler's classic isokinetic 
relationship.1920 We shall also comment on related statistical 
issues of data accuracy and covariance.21,22 

Leffler found empirically that 6AH* in many reaction series 
varies linearly with 6AS*. He fitted his data to the equation 
6AH* = /3 • 6AS*, where /3 is a parameter with the dimension 
of temperature. If one assumes that the fit is error-free over a 
temperature range including /?, then there is exact enthalpy-
entropy compensation at a single temperature T = (i. In solvent 
reorganization, on the other hand, 6AH°im is precisely equal 
to T • d AS°em at any temperature, according to the Second Law. 
However, d AH°tm is only part of the overall 6AH°, and because 
the difference, dAH0

n0m, does not have exact enthalpy—entropy 
compensation, the overall 6AH0 is not exactly equal to T- dAS°. 

As for the statistical issues, when 6AH° (6AH*) and 6AS° 
(6AS*) are calculated from the temperature derivative of 
equilibrium or rate constants, the errors are correlated with a 
slope T, and it is possible for enthalpy-entropy compensation 
to be spurious. However, as this paper demonstrates, the fact 
that such a slope is T is not a proof that compensation must be 
due to correlated errors. The data in Figures 2 and 3 cover 
ranges that greatly exceed the experimental errors, and therefore 
are judged to be significant. 
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Appendix 

To show that eq 8 implies genuine compensation, we must 
show that in general (SA\*. - SA\^), in contrast to (GA\X

 - GA\a), 

(19) Leffler, J. E. J. Org. Chem. 1955, 20, 1202-1231. 
(20) Leffler, J. E.; Grunwald, E. Rates and Equilibria of Organic 

Reactions; John Wiley and Sons: New York, 1963; Chapter 9. 
(21)Exner, O. Prog. Phys. Org. Chem. 1973, 10, 411-482. 
(22) Linert, W. Chem. Soc. Rev. 1994, 23, 429-438. 

does not vanish at equilibrium. The following proof will be 
based on the Second Law. To simplify the notation, we shall 
introduce the symbol y = dGldsx-

When equating SA\X - SA\at0 -[9(GA\X - G^I^T], we must 
be careful about the variables that remain inactive. If the closed 
system stays at equilibrium while the temperature is changing 
by dT, y stays constant at zero, and the partial derivative 
-[3(GA\X

 - GA\id/dT]niini<y=o vanishes because eq 8 is true at 
all temperatures. But this partial derivative is not equal to S^x 

- 5A\a! At level IE in Composition Tree (Chart 1), on which 
eqs 5c and 6b operate, the primary composition variables are 
(«A\a> "A\X, «x\a). Thus, to derive (SAW SA\X, Sx\a), the temperature 
derivatives must be taken either with («A\a, «A\X, «x\a) constant 
or with the transformed variables {n\, m, sx) constant. Choosing 
the latter, we obtain that at constant P, 

SA\x ~ SA\a = ~[d(GA\x ~ GA\aV97ln,,n2,sx 

The difference between this partial derivative and that with 
maintenance of equilibrium is that the independent variables 
now are P, T, n\, «2, *x. rather than P, T, m, n-i, y. 

To prove that (5A\X - SA\a) ̂ s nonzero, let P, n\, ni be constant 
and transform the independent variables from T, sx to T, y: 

[3(G^x - G A J / an , = [3(GAU - GAJ/dT]Sx + 

[d(G^-GA<J/dsx]T(dsx/dT)y 

When y = 0, the term on the left is zero because eq 8 applies 
at all temperatures. The first term on the right equals -(SA\K 

— SA\a), while differentiation of eq 7 at constant T, P, n\, ni 
shows that 3(GA\x - GA\a)/3jx = (&G/dsx

2)/n2. The latter is 
the curvature of the plot of Glni vs ̂ x and is a positive number, 
because G(sx) is at a minimum at equilibrium. At the same 
time, (dsx/dT)y the temperature derivative of Sx at equilibrium, 
is a finite number which vanishes only in those rare cases in 
which Sx happens to be independent of T. Thus SA\* — &\\a 
equals a positive number times a finite, usually nonzero, number. 
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